Regulation of Metnase’s TIR binding activity by its binding partner, Pso4
نویسندگان
چکیده
منابع مشابه
Regulation of InsP3 receptor activity by neuronal Ca2+-binding proteins.
Inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) were recently demonstrated to be activated independently of InsP(3) by a family of calmodulin (CaM)-like neuronal Ca(2+)-binding proteins (CaBPs). We investigated the interaction of both naturally occurring long and short CaBP1 isoforms with InsP(3)Rs, and their functional effects on InsP(3)R-evoked Ca(2+) signals. Using several experimental pa...
متن کاملBIG1 is a binding partner of myosin IXb and regulates its Rho-GTPase activating protein activity.
Myosin IXb, a member of the myosin superfamily, is a molecular motor that possesses a GTPase activating protein (GAP) for Rho. Through the yeast two-hybrid screening using the tail domain of myosin IXb as bait we found BIG1, a guanine nucleotide exchange factor for ADP-ribosylation factor (Arf1), as a potential binding partner for myosin IXb. The interaction between myosin IXb and BIG1 was demo...
متن کاملGluR1 controls dendrite growth through its binding partner, SAP97.
Activity-dependent dendrite elaboration influences the pattern of interneuronal connectivity and network function. In the present study, we examined the mechanism by which the GluR1 subunit of AMPA receptors controls dendrite morphogenesis. GluR1 binds to SAP97, a scaffolding protein that is a component of the postsynaptic density, via its C-terminal 7 aa. We find that elimination of this inter...
متن کاملRetinoblastoma and Its Binding Partner MSI1 Control Imprinting in Arabidopsis
Parental genomic imprinting causes preferential expression of one of the two parental alleles. In mammals, differential sex-dependent deposition of silencing DNA methylation marks during gametogenesis initiates a new cycle of imprinting. Parental genomic imprinting has been detected in plants and relies on DNA methylation by the methyltransferase MET1. However, in contrast to mammals, plant imp...
متن کاملRegulation of cell cycle progression by forkhead transcription factor FOXO3 through its binding partner DNA replication factor Cdt1.
To ensure genome stability, DNA must be replicated once and only once during each cell cycle. Cdt1 is tightly regulated to make sure that cells do not rereplicate their DNA. Multiple regulatory mechanisms operate to ensure degradation of Cdt1 in S phase. However, little is known about the positive regulators of Cdt1 under physiological conditions. Here we identify FOXO3 as a binding partner of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archives of Biochemistry and Biophysics
سال: 2010
ISSN: 0003-9861
DOI: 10.1016/j.abb.2010.04.011